
Dimension Reduction Regression in R

Sanford Weisberg
�

School of Statistics, University of Minnesota, St. Paul, MN 55108-6042.

Supported by National Science Foundation Grant DUE 0109756.

January 10, 2002

Abstract

Regression is the study of the dependence of a response variable � on a collection � predic-
tors collected in � . In dimension reduction regression, we seek to find a few linear combinations���� �	��
�

�� �	�� � , such that all the information about the regression is contained in these � linear com-
binations. If � is very small, perhaps one or two, then the regression problem can be summarized
using simple graphics; for example, for ����� , the plot of � versus

� �� � contains all the regression
information. When ����� , a 3D plot contains all the information.

Several methods for estimating � and relevant functions of
� �
�
�
�� � � have been suggested in the

literature. In this paper, we describe an R package for three important dimension reduction methods:
sliced inverse regression or sir, sliced average variance estimates, or save, and principal Hessian
directions, or phd. The package is very general and flexible, and can be easily extended to include
other methods of dimension reduction. It includes tests and estimates of the dimension � , estimates
of the relevant information including

� � ��
�
�
�� � � , and some useful graphical summaries as well.

1 Introduction

In the general regression problem, we have a response � of dimension � (usually, �����) and � -
dimensional predictor � , and the goal is to learn about how the conditional distributions �! "�$# �&% as
� varies through its sample space. In parametric regression, we specify a functional form for the condi-
tional distributions that is known up to a few parameters. In nonparametric regression, no assumptions
are made about � , but progress is really only possible if the dimensions � and � are small.

Dimension reduction regression is one intermediate possibility between the parametric and nonpara-
metric extremes. In this setup, we assume without loss of information that the conditional distributions
can be indexed by ' linear combinations, or for some probably unknown �)(*' matrix +

�! ,�$# �	%-�/.0 ,�$# +213�	% (1)

or in words, all the information in � about � is contained in the ' linear combinations + 1 � . This
representation always holds trivially, by setting +4�65 , the �7(8� identity matrix, and so the usual goal
is to find the + of lowest possible dimension for which this representation holds. If (1) holds for a
particular + , then it also holds for +!9:�;+=< , where < is any full rank matrix, and hence the unique part
of the regression summary is the subspace that is spanned by + , which we denote >? "+=% . Cook (1998)
provides a more complete introduction to these ideas, including discussion of when this subspace, which
we call the central subspace, exists, and when it is unique.
@
Journal of Statistical Software, 2002, Volume 7, available from http://www.jstatsoft.org

1

In this paper, we discuss software for estimating the subspace >� "+ % spanned by + , and tests con-
cerning the dimension ' based on dimension reduction methods. This software was written using R, but
can also be used with Splus. Most, but not all, of the methods available here are also included in the
Xlisp-Stat program Arc, Cook and Weisberg (1999). The R platform allows use of dimension reduction
methods with existing statistical methods that are not readily available in Xlisp-Stat, and hence in Arc.
For example, the R functions are more suitable for Monte Carlo experimentation than Arc. In addition,
R includes a much wider array of options for smoothing, including multidimensional smoothers. On the
other hand, Arc takes full advantage of the dynamic graphical capabilities of Xlisp-Stat, and at least for
now the graphical summaries of dimension reduction regression are clearly superior in Arc. Thus, there
appears to be good reason to have these methods available using both platforms.

Cook (1998) provides the most complete introduction to this area, and we leave the details of all
the methods described here to that book. See also Cook and Weisberg (1994) for a more gentle intro-
duction to dimension reduction. In this paper we give only the barest outline of dimension reduction
methodology, concentrating on the software.

Suppose we have data "� ��� � � % , for
� �4� ���������
	 that are independent and collected into a matrix �

and a vector � if � � � and a matrix � if ��
 � . In addition, suppose we have nonnegative weights��� ��������� ��� whose sum is 	 ; if unspecified, we take all the � � ��� . Generally following Yin (2000), a
procedure for estimating >? "+=% and for obtaining tests concerning ' is:

1. Scale and center � as �
��� ����� ���� ����	1 % ��� �����

where �� �"! � � � �$# ! � � is the vector of weighted column means, � ��%'&)(+*	 � � % , and

�� � �	 � � ,�-� �.�� 1 % 1 �� ��-� ���� 1 %
�� ���/�

is any square root of the inverse of the sample covariance matrix for � (for example, using
a singular value decomposition) and �� is a vector of weighted sample means. In this scaling, the
rows of

�
have zero mean and identity sample covariance matrix.

2. Use the scaled and centered data
�

to find a dimension � (7� symmetric matrix
�0

that is a
consistent estimate of a population matrix

0
with the property that >� 0 %214>� "+ % . For most

procedures, all we can guarantee is that
0

tells us about a part, but not necessarily all, of >� "+ % .
Each of the methods (for example, sir, save, and phd) have a different method for selecting

�0
.

3. Let # �3 � #54 ����� 46# �356 # be the ordered absolute eigenvalues of
�0

, and
�78� ��������� �7 6 the corresponding

eigenvectors of
�0

. In some applications (like phd) the eigenvalues may be negative.

4. A test that the dimension ' � ':9 against the alternative that ';
 ':9 is based on a partial sum of
eigenvalues of the form:

<>=@? � 	 �A
6
B

C�D = ?/E � #
�3 C # F

where
�A is a method-specific term, and G is generally equal to 1, but it is equal to 2 for phd. The

distribution of these partial sums depends on assumptions and on the method of obtaining
�0

.

5. Given ' , the estimate of >? "+=% is the span of the first ' eigenvectors. When viewed as a sub-
space of H � , the basis for this estimated subspace is

� �7 � ��������� � �7 = . These directions can then be
back-transformed to the � -scale. Given the estimate of >� "+ % , graphical methods can be used to
recover information about � , or about particular aspects of the conditional distributions, such as
the conditional mean function.

2

2 Usage

The R package for dimension reduction called dr can be obtained from the Comprehensive R Archive
Network, CRAN, at http://www.R-project.org. The primary function in this package is called
dr. Its usage is modeled after the R function lm that is used for fitting linear models, and so many of
the arguments that can be used in lm can also be used in dr. The following statements will examine
dimension reduction using sir applied to the Australian Institute of Sport data:

> library(dr)
> data(ais)
> attach(ais)
> i1 <- dr(LBM~ Ht + Wt + log(RCC) + WCC, method="sir", nslices=8)

First, provide a formula giving the response � on the left side, and the predictors on the right side.
The response can be a vector of 	 elements or for sir and save it can be a matrix with 	 rows and �
columns. The model statement on the right side can include factors and interactions, or transformations,
so the syntax is very general. The remaining arguments are all optional, and the values shown are all
defaults. method can equal either "sir", "save", "phd", "phdres", "phdq" or "phdy". Adding
other methods is not difficult, and is described in Section 3.6. The number of slices is relevant only for
the methods that use slicing, sir and save, and has default equal to the larger of 8 and the number of
predictors plus 3. If the response has � columns, then the argument nslices should be a vector of �
elements. If it is specified as a number rather than a vector, then that number will give the total number
of cells, approximately. For example, if �7��� and nslices=8, the program will slice

� �����
slices

along each of the two response variables for a total of
� (� �	� cells. The argument numdir specifies

the number of directions to display in printed output and the number of tests to compute. The default is
4.

Keywords inherited from lm include weights, which if set should be a vector of the same length
of the response of positive numbers; contrasts, which specifies how to turn factors into variables;
na.action, which specifies how to “handle" missing values. The default for this argument is na.omit,
which will reduce the dataset by eliminating all cases with one or more missing value. The argument
subset can be set to a list of case indices to be used in the computations; all other cases are ignored.

Brief printed output from the drmethod is obtained by simply typing the name of the object created,
i1 in the above example:

> i1

Call:
dr(formula = LBM ~ Ht + Wt + log(RCC) + WCC, method = "sir", nslices = 8)

Eigenvectors:
Dir1 Dir2 Dir3 Dir4

Ht 0.01054752 -0.0001569418 -0.10750718 0.009197952
Wt 0.02374812 0.0040912479 0.06248766 -0.019286750
log(RCC) 0.99960915 -0.9999614779 0.99211547 0.757087590
WCC -0.01031144 0.0077640009 -0.01563290 0.652963858
Eigenvalues:
[1] 0.87789585 0.15017504 0.03972711 0.01737281

This output repeats the call that created the object, and basic summary statistics, described more com-
pletely in Section 3.1. Using the summary method gives more complete output:

> summary(i1)

3

Call:
dr(formula = LBM ~ Ht + Wt + log(RCC) + WCC, method = "sir", nslices = 8)

Terms:
LBM ~ Ht + Wt + log(RCC) + WCC

Method:
sir with 8 slices, n = 202.

Slice Sizes:
26 26 25 25 25 27 30 18

Eigenvectors:
Dir1 Dir2 Dir3 Dir4

Ht 0.01055 0.0001569 -0.10751 0.009198
Wt 0.02375 -0.0040912 0.06249 -0.019287
log(RCC) 0.99961 0.9999615 0.99212 0.757088
WCC -0.01031 -0.0077640 -0.01563 0.652964

Dir1 Dir2 Dir3 Dir4
Eigenvalues 0.8779 0.1502 0.03973 0.01737
R^2(OLS|dr) 0.9986 0.9987 0.99978 1.00000

Asymp. Chi-square tests for dimension:
Stat df p-value

0D vs >= 1D 219.205 28 0.000000
1D vs >= 2D 41.870 18 0.001153
2D vs >= 3D 11.534 10 0.317440
3D vs >= 4D 3.509 4 0.476465

This output repeats most of the basic output, plus it also gives information on the slices and on tests of
dimension, if available.

The class of the object created by dr depends on the value of the argument method. For example,
if method="sir", the object is of class sir if the response is univariate and msir if the response is
multivariate. If method="save", the object is of class save or msave. All these objects inherit from
the class dr.

Several additional quantities are computed and stored in the object. These include:

> names(i1)
[1] "formula" "contrasts" "xlevels" "call"
[5] "ols.coef" "ols.fit" "weights" "cols.used"
[9] "offset" "estimate.weights" "terms" "method"

[13] "response.name" "model" "cases" "evectors"
[17] "evalues" "numdir" "raw.evectors" "decomp"
[21] "M" "slice.info"

For example, to have access to the eigenvectors of
�0

, type

> i1$evectors
Dir1 Dir2 Dir3 Dir4

Ht 0.01054752 0.0001569418 -0.10750718 0.009197952
Wt 0.02374812 -0.0040912479 0.06248766 -0.019286750
log(RCC) 0.99960915 0.9999614779 0.99211547 0.757087590
WCC -0.01031144 -0.0077640009 -0.01563290 0.652963858

4

while i1$M returns the value of the matrix
�0

. ols.fit returns ols fitted values (or weighted least
squares fitted values, if appropriate) which are computed and used by some of the methods and sum-
maries.

3 Methods available

3.1 Sliced inverse regression

Sliced inverse regression, or sir, was proposed by Li (1991); see Cook (1998, Chapter 11). In sir,
we make use of the fact that given certain assumptions on the marginal distribution of � 1, the inverse
regression problem �! ��&# � % 1 >� "+ % . The general computational outline for sir is as follows:

1. Examine �! ��&# � % by dividing the range of � into
�

slices, each with approximately the same
number of observations. With a multivariate response (� has � columns), divide the range of
� � (;� � ����� (;��� into

�
cells. For example, when � � � , and we slice � � into 3 slices, � � into 2

slices, and ��� into 4 slices, we will have
� �	� (� (��=�	��� cells. The number of slices or cells�

is a tuning parameter of the procedure.

2. Assume that within each slice or cell �! ��&# � % is approximately constant. Then the expected value
of the within-slice vector of sample means will be a vector in >� +=% .

3. Form the
� (�� matrix whose

�
-th row is the vector of weighted sample means in the

�
-th slice.

The matrix
�0

is the �)(=� sample covariance matrix of these sample mean vectors.

sir thus concentrates on the mean function E
�
� % , and ignores any other dependence.

The output given in the last section is an example of typical output for sir. First is given the eigen-
vectors and eigenvalues of

�0
; the eigenvectors have been back-transformed to the original � -scale.

Assuming that the dimension is ' , the estimate of >? "+=% is given by the first ' eigenvectors. Also given
along with the eigenvectors is the square of the correlation between the ols fitted values and the first
' principal directions. The first direction selected by sir is almost always about the same as the first
direction selected by ols, as is the case in the example above.

For sir, Li (1991) provided asymptotic tests of dimension based on partial sums of eigenvalues,
and these tests are given in the summary. The tests have asymptotic Chi-square distributions, with the
number of degrees of freedom shown in the output.

Examining the tests shown in the final output, we see that the test of ' �
	 versus '�
�	 has a
very small � -value, so we would reject ';��	 . The test for ' � � versus '
 � has � -value near
	 � 	
	 � , suggesting that ' is at least 2. The test for ' � � versus '
	� has � -value of about 	 � � � , so we
suspect that '=�	� for this problem. This suggests that further analysis of this regression problem can be
done based on the 3D graph of the response versus the linear combinations of the predictors determined
by the first two eigenvectors, and the dimension of the problem can be reduced from 4 to 2 without
loss of information. See Cook (1998), and Cook and Weisberg (1994, 1999), for further examples and
interpretation.

When the response is multivariate, the format of the call is:

m1 <- dr(cbind(LBM,RCC)~Ht+Wt+WCC))

The summary for a multivariate response is similar:

1For the methods discussed here, we generally need the linearity condition, the E ��� ����� �0����� is a linear function for
� ���

,
where � is any matrix, and

�
is a matrix such that ����� � ����� ����� � � ����� . This condition holds, for example, if the marginal

distribution of � is normal, although that assumption is much stronger than is needed. See Cook (1998), Cook and Weisberg
(1994, 1999) for more discussion.

5

> summary(m1)

Call:
dr(formula = cbind(LBM, RCC) ~ Ht + Wt + WCC)

Terms:
cbind(LBM, RCC) ~ Ht + Wt + WCC

Method:
sir with 9 slices, n = 202, using weights.

Slice Sizes:
24 23 23 23 22 21 22 22 22

Eigenvectors:
Dir1 Dir2 Dir3

Ht 0.4857 0.3879 0.1946
Wt 0.8171 -0.2238 -0.1449
WCC 0.3105 -0.8941 0.9701

Dir1 Dir2 Dir3
Eigenvalues 0.7076 0.05105 0.02168
R^2(LBM|dr) 0.9911 0.99124 1.00000
R^2(RCC|dr) 0.9670 0.97957 1.00000

Asymp. Chi-square tests for dimension:
Stat df p-value

0D vs >= 1D 157.63 24 0.0000
1D vs >= 2D 14.69 14 0.3995
2D vs >= 3D 4.38 6 0.6254

The test statistics are the same as in the univariate response case, as is the interpretation of the eigenval-
ues and vectors. The output gives the squared correlation of each of the responses with the eigenvectors.

3.2 Sliced average variance estimation

Sliced average variance estimation, or save, was proposed by Cook and Weisberg (1991). As with sir,
we slice the range of � into

�
slices, but rather than compute the within-slice mean we compute within-

slice covariance matrices. If � � is the weighted within slice sample covariance matrix in slice
�
, then the

matrix
�0

is given by �0 � �	
B � � "5 ��� � % �

where
� � is the sum of the weights in the slice; if all weights are equal, then the

� � are just the number
of observations in each slice. save looks at second moment information and may miss first-moment
information, particularly it may miss linear trends.

Output for save is similar to sir, except that no asymptotic tests have been developed. However,
tests of dimension based on a permutation test are available; see Section 4.

6

3.3 Principal Hessian direction

Li (1992) proposed the method called principal Hessian directions, or pHd. This method examines the
matrix

�0
given by �0 � �	

�B
� D � � � . � � � � 1�

where . � is either equal to � � (method phdy) or . � is an ols residual (method phd or phdres), and � � is
the weight for the

�
-th observation (recall again that we assume that ! � � � 	 , and if this is not satisfied

the program rescales the weights to meet this condition). While all methods produce
�0

matrices whose
eigenvectors are consistent estimates of vectors in >� +=% , the residual methods are more suitable for tests
of dimension. See Cook (1998, Chapter 12) for details.

Output for phd is again similar to sir, except for the tests. Here is the output for the same setup as
before, but for method phdres:

> i2 <- update(i1,method="phdres")
> summary(i2)

Call:
dr(formula = LBM ~ Ht + Wt + log(RCC) + WCC, method = "phdres")

Terms:
LBM ~ Ht + Wt + log(RCC) + WCC

Method:
phd, n = 202.

Eigenvectors:
Dir1 Dir2 Dir3 Dir4

Ht 0.12764 -0.0003378 0.005550 0.02549
Wt -0.02163 0.0326138 -0.007342 -0.01343
log(RCC) -0.74348 0.9816463 0.999930 -0.99909
WCC 0.65611 -0.1879008 -0.007408 -0.03157

Dir1 Dir2 Dir3 Dir4
Eigenvalues 1.4303 1.1750 1.1244 0.3999
R^2(OLS|dr) 0.2781 0.9642 0.9642 1.0000

Asymp. Chi-square tests for dimension:
Stat df Normal theory Indep. test General theory

0D vs >= 1D 35.015 10 0.0001241 0.005427 0.01811
1D vs >= 2D 20.248 6 0.0025012 NA 0.03200
2D vs >= 3D 10.281 3 0.0163211 NA 0.05530
3D vs >= 4D 1.155 1 0.2825955 NA 0.26625

The column of tests called “normal theory" were proposed by Li (1992) and require that the predictors
are normally distributed. These statistics are asymptotically distributed as Chi-square, with the degrees
of freedom shown.

When the method is phdres additional tests are provided. Since this method is based on residuals,
it gives tests concerning the central subspace for the regression of the residuals on � rather than the
response on � . The subspace for this residual regression may be, but need not be, smaller than the
subspace for the original regression. For example, the column marked “Indep. test" is essentially a test
of '7� 	 versus '
 	 described by Cook (1998) for the residual regression. Should the significance

7

level for this test be large, we might conclude that the residual regression subspace is of dimension zero.
From this we have two possible conclusions: (1) the dimension of the response regression may be 1 if
using the residuals removed a linear trend, or (2) the dimension may be 0 if the residuals did not remove
a linear trend.

Similarly, if the significance level for the independence test is small, then we can conclude that the
dimension is at least 1. It could be one if the method is picking up a nonlinear trend in the OLS direction,
but it will be 2 if the nonlinearity is in some other direction.

The independence test and the final column, also from Cook (1998), use the same test statistic, but
different distributions based on different assumptions. Significance levels are obtained by comparing
the statistic to the distribution of a random linear combination of Chi-square statistics, each with one
df. These statistics do not require normality of the predictors. The way the significance levels in this
column are approximated using the method of Wood (1989).

3.4 Quadratic phd

Li (1992) proposed an alternative method of estimating the Hessian matrix based on quadratic regres-
sion, as follows: (1) fit the ols regression of the response on the full second-order model based on all �
predictors; (2) set

�0
to be the � (� matrix whose � ��� % element is the estimated coefficient of � � � C .

Given this estimate of
0

, proceed as with other phd methods.

3.5 Multivariate phd

No multivariate extensions of phd have yet been proposed, and so the response must be univariate for
any phd method.

3.6 Adding other methods to dr

You may skip this section unless you are interested in adding additional dimension reduction methods
to dr. The dr function is designed to be flexible and to make adding additional methods to the package
as easy as possible. Here are the steps you need to follow:

1. Select a name for your method. For example suppose you select the name “poly” to mean that
you will be estimating

0
by fitting polynomials to the inverse plots each of the predictors versus

the response. When you call dr with method="poly", an object of class poly will be created.
If your response is a matrix, the object will be of type mpoly, which inherits from poly.

2. You will need to write a function called dr.fit.M.poly that estimates the
0

matrix for your
method. You can model this function after the function dr.fit.M.sir shown in Table 1. The
important arguments that are passed to this function include z, which is an 	 (� rotated and cen-
tered data matrix with no missing values; y, which is the response vector or matrix, and w, which
is the vector of weights, if any. If your method requires other parameters, for example setting a de-
gree of a polynomial, simply add the argument degree=2 to the list of function arguments. This
sets the default value of degree equal to 2. The “. . . ” argument in the functions allow you to add
the degree argument when you call the function dr. Your function must return a list, including
the argument M, which is the matrix of interest.

0
can be either a square matrix leading to an

analysis of eigenvalues and eigenvectors, as in the example for sir, or it can be a rectangular ma-
trix, leading to use of singular values and vectors. All entries in the list will become attributes of
the resulting object. For example, if your list is list(z=z,degree=degree), when you create
an object like

> i1 <- dr(LBM~Ht+Wt+RCC+WCC,method="poly",degree=3)

8

Table 1: The dr.fit.M method for sir.

###
Sliced Inverse Regression
###

dr.fit.M.sir <-function(object,z,y,w=NULL,nslices=NULL,
slice.info=NULL,...) {

get slice information
h <- if (!is.null(nslices)) nslices else max(8, NCOL(z)+3)
slices<- if(is.null(slice.info)) dr.slices(y,h) else slice.info

initialize slice means matrix
zmeans <- matrix(0,slices$nslices,NCOL(z))
slice.weight <- slices$nslices

make sure weights add to n
wts <- if(is.null(w)) rep(1,NROW(z)) else NROW(z) * w /sum(w)

compute weighted means within slice (weights always add to n)
wmean <- function (x, wts) { sum(x * wts) / sum (wts) }
for (j in 1:slices$nslices){
sel <- slices$slice.indicator==j
zmeans[j,]<- apply(z[sel,],2,wmean,wts[sel])
slice.weight[j]<-sum(wts[sel])}

get M matrix for sir
M <- t(zmeans) %*% apply(zmeans,2,"*",slice.weight)/ sum(slice.weight)
return (list (M=M,slice.info=slices))

}

9

Table 2: The dr.test.sir function.

dr.test.sir<-function(object,nd) {
#compute the sir test statistic for the first nd directions

e<-sort(object$evalues)
p<-length(object$evalues)
n<-object$cases
st<-df<-pv<-0
nt <- min(p,nd)
for (i in 0:nt-1)
{st[i+1]<-n*(p-i)*mean(e[seq(1,p-i)])
df[i+1]<-(p-i)*(object$slice.info$nslices-i-1)
pv[i+1]<-1-pchisq(st[i+1],df[i+1])

}
z<-data.frame(cbind(st,df,pv))
rr<-paste(0:(nt-1),"D vs >= ",1:nt,"D",sep="")
dimnames(z)<-list(rr,c("Stat","df","p-value"))
z

}

the value of i1$degree will be 3.

3. If your method works differently when y is a matrix, write a method called dr.fit.M.mpoly to
do the computations for this case. For sir, the only difference between univariate and multivariate
responses is in the way the slices are obtained, and the method dr.slices works for either case.
As a result, a separate multivariate fit method is not required for sir.

4. If your method has tests, other than the permutation tests available for all methods, you will need
to write a function called dr.test.poly (or dr.test.mpoly if a separate method is required
for multivariate responses). The equivalent method for sir is shown in Table 2. The test method is
called by the summary.dr function.

The function dr.fit.y(object) returns the response variable for use in computing
0

. For ex-
ample, the function dr.fit.y.phdy returns the left-hand side variable from the formula specified in
the call to dr, while dr.fit.y.phdres returns the residuals from the regression of the response on
the predictors. You may also want to write a summary.dr.poly method if the default summary is not
adequate for your needs.

4 Permutation tests

Cook (1998) and Yin (2000) discuss permutation tests of dimension that can be used with a dimension
reduction method. These are implemented in the function dr.permutation.test. Typical use of this
function is

> dr.permutation.test(i1,npermute=499)

Permutation tests
Number of permutations:
[1] 499

10

Test results:
Stat p-value

0D vs >= 1D 219.205 0.000
1D vs >= 2D 41.870 0.002
2D vs >= 3D 11.534 0.284
3D vs >= 4D 3.509 0.354

The function requires the name of the object. The number of permutations defaults to 50 and the number
of directions defaults to 3. Increasing either can increase the computation time required to obtain the
solution. The permutation test results for the example are very similar to the asymptotic results given
earlier.

5 Graphical methods

The function call plot(i1) returns a scatterplot matrix of the response and the principal directions.
The call plot(i1,mark.by.y=TRUE) produces a scatterplot matrix of the principal directions, but
with points marked (colored) according to the value of the response; the point marking does not work
with Splus.

The function call dr.coplot(i1) returns a plot of the response versus the first principal direc-
tion, with a separate panel conditioning on the value of the second principal direction (a coplot). The
call dr.coplot(i1,mark.by.y=T), gives a coplot of the first direction versus the second direction
conditioning on the third direction and using color to encode the information about the response.

The function rotplot is a generic function that allows looking at a number of static views of a 3D
plot. The call

> rotplot(dr.directions(m1,1:2),dr.y(m1),number=16)

gives 16 views of the 3D plot of the response versus linear combinations of the first two principal
directions.

6 Weights

Weights are generally used in dimension reduction methods to make the resulting weighted sample
closer to a normal distribution than the original sample. Cook (1998, Section 8.4) discusses the method
that is implemented here. When weights are present, they are used in centering the data and computing
the covariance matrix, and they are used in computing the objective matrix

0
for phd. Weights may be

provided by the user with the weights argument. If weights=NULL, the default, no weighting is used.
The function dr.weights is used to estimate weights using the algorithm described by Cook (1998,

Sec. 8.4). There are several other arguments that control how the weights are computed, as described
below, and on the help page for the function dr.weights. The algorithm works as follows:

1. For an 	 (*� data matrix � , find estimates � and
�

of the mean and covariance matrix. For
this purpose, in R the function cov.rob in the lqs package is used, while in Splus the func-
tion covRob in the robust package is used; in either case the needed package will be loaded
automatically. If you do not want to use one of these routines, you must rewrite the function
robust.center.scale to use your preferred code. In R, the method of computing � and

�
is

determined by the argument covmethod. If covmethod="classical", the usual estimator is
used for

�
, but � is estimated by medians. If method="mve", the default, or method="mcd", the

covariance matrix is estimated by the minimum volume ellipsoid method and the minimum deter-
minant method, respectively. These latter two also return a robust estimate of center. Any tuning

11

parameters for the method to compute the robust estimate of � and
�

can be passed from the call
to dr. See the documentation for cov.rob for a description of these additional parameters. All
the defaults are sensible, so most users will not need to use these additional parameters.

2. Compute the matrix
�
� �� � � � 1 % � ���/�

. If the data were normally distributed N � � � % , the
rows of

�
would be like a sample from N �	 � 5 % .

3. Obtain a random vector
�

from the N 	 ��� � 5 % distribution. The parameter sigma=1 is a tuning
parameter that can be set in the call to dr, and values near 1 or slightly smaller seem appropriate.
Find the row of

�
that is closest to

�
(the code uses Euclidean distance), and increase a counter

for that row by 1.

4. The argument nsamples determines the number of times this last step is repeated; the default is
nsamples=10*dim(x)[1] where � is the 	 (� data matrix; this number may be too small.

5. Return a vector of weights given by the value of the counter divided by nsamples and multiplied
by 	 , so the sum of the weights will be 	 .

An example of the use of weights is:

> wts <- dr.weights(LBM~Ht+Wt+RCC+WCC)
> i1 <- dr(LBM~Ht+Wt+RCC+WCC,weights=wts,method="phdres")

7 Miscellaneous functions included in dr

The function dr.direction takes two arguments, the object name, and which directions are wanted
(for, example, 1:3 returns the first three directions). It returns the matrix ��� , scaled to have unit
column length unless the argument norm is false, where � gives the specified eigenvectors.

The function calls dr.x(i1) and dr.y(i1) return the model matrix and the response, respectively.
dr.z(i1,center=T,rotate=T) returns the centered and rotated

�
matrix from � . You can also

use dr.z by explicity providing a matrix � in place of the first argument, and if necessary a vector of
weights as a second argument.

The routine used for slicing is called dr.slices(y,h) to slice y into h slices. If y has � columns
and h has � elements, then slicing is done recursively. The first column of y is sliced into h[1] slices.
Within each of these slices, the second column of y is sliced into h[2] slices, giving h[1]*h[2] slices.
This process is then repeated for any additional columns. If h is a scalar, then each dimension is sliced
into the smallest integer larger than h

��� 6
slices. For example, if � ��� and h � � , then each dimension

has 3 slices for a total of 9.

8 Bug Reports

Please send bug reports to sandy@stat.umn.edu.

9 Splus

dr has been tested with Splus versions 5 and 6 under Linux. If you want to use dr with Splus, you
must either: (1) set the variable whichengine <- "s6" before you load the file dr.R, or else you
must set this value on line 21 of the file. Otherwise, the same code is used for R and Splus. All options
available in R seem to work in Splus, except that the argument mark.by.y on plots and coplots and
the function markby do not work with Splus.

12

10 Acknowledgements

Jorge de la Vega did extensive testing of the code, and wrote some of the functions, and Cindy Yu wrote
early versions of some of the functions. Referee’s comments were very helpful in revising this paper
and in documenting dr.

11 References

Cook, R. D. (1998). Regression Graphics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1991). Discussion of Li (1991). Journal of the American Statistical
Association, 86, 328–332.

Cook, R. D. and Weisberg, S. (1994). An Introduction to Regression Graphics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics, New
York: Wiley.

Li, K C. (1991). Sliced inverse regression for dimension reduction (with discussion), Journal of the
American Statistical Association, 86, 316-342.

Li, K C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another
application of Stein’s lemma. Journal of the American Statistical Association, 87, 1025–1034.

Wood, A. (1989). An F-approximation to the distribution of a linear combination of chi-squared random
variables. Communication in Statistics, Part B – Simulation and Computation, 18, 1439–1456.

Yin, Xiangrong (2000). Dimension reduction using inverse third moments and central � -th moment
subspaces. Unpublished Ph. D. dissertation, University of Minnesota, School of Statistics.

13

12 Function documentation

dr Dimension reduction regression

Description

The function dr implements dimension reduction methods, including SIR, SAVE and pHd.

Usage

dr(formula, data=list(), subset, weights, na.action=na.omit, method="sir",
contrasts=NULL,numdir=4, ...)

Arguments

formula a symbolic description of the model to be fit. The details of the model are the same as for
lm.

data an optional data frame containing the variables in the model. By default the variables are
taken from the environment from which ‘dr’ is called.

subset an optional vector specifying a subset of observations to be used in the fitting process.

weights an optional vector of weights to be used where appropriate.

na.action a function which indicates what should happen when the data contain ‘NA’s. The default
is ‘na.omit,’ which will force calculations on a complete subset of cases.

method This character string specifies the method of fitting. “sir" specifies sliced inverse regres-
sion and “save" specifies sliced average variance estimation. “phdy" uses principal hes-
sian directions using the response as suggested by Li, and “phdres" uses the LS residuals
as suggested by Cook. Other methods may be added

contrasts an optional list. See the ‘contrasts.arg’ of ‘model.matrix.default’.

numdir Maximum number of directions to consider

... additional items that may be required or permitted by some methods. nslices is the num-
ber of slices used by sir and save.

Details

The general regression problem studies ��� ��� ��� , the conditional distribution of a response � given a set of
predictors � . This function provides methods for estimating the dimension and central subspace of a general
regression problem. That is, we want to find a ���=� matrix 	 such that

��� ��� ��� �
��� ��� 	 � ���
Both the dimension � and the subspace ���
	�� are unknown. These methods make few assumptions. All the
methods available in this function estimate the unknowns by study of the inverse problem, ��� ��� ��� . In each,
a kernel matrix � is estimated such that the column space of � should be close to the central subspace.
Eigenanalysis of � is then used to estimate the central subspace. Objects created using this function have
appropriate print, summary and plot methods.

Weights can be used, essentially to specify the relative frequency of each case in the data. Empirical weights
that make the contours of the weighted sample closer to elliptical can be computed using dr.weights. This
will usually result in zero weight for some cases. The function will set zero estimated weights to missing.

14

Several functions are provided that require a dr object as input. dr.permutation.tests uses a permuta-
tion test to obtain significance levels for tests of dimension. dr.coplot allows visualizing the results using
a coplot of either two selected directions conditioning on a third and using color to mark the response, or the
resonse versus one direction, conditioning on a second direction. plot.dr provides the default plot method
for dr objects, based on a scatterplot matrix.

Value

Returns an object that inherits from dr (the name of the type is the value of the method argument), with
attributes:

M A matrix that depends on the method of computing. The column space of M should be
close to the central subspace.

evalues The eigenvalues of M (or squared singular values if M is not symmetric).

evectors The eigenvectors of M (or of M’M if M is not square and symmetric) ordered according
to the eigenvalues.

numdir The maximum number of directions to be found. The output value of numdir may be
smaller than the input value.

ols.coef Estimated regression coefficients, excluding the intercept, for the (weighted) LS fit.

ols.fit LS fitted values.

slice.info output from sir.slice, used by sir and save.

method the dimension reduction method used.

Other returned values repeat quantities from input.

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

References

The details of these methods are given by R. D. Cook (1998). Regression Graphics. New York: Wiley. Equiv-
alent methods are also available in Arc, R. D. Cook and S. Weisberg (1999). Applied Regression Including
Computing and Graphics, New York: Wiley, www.stat.umn.edu/arc.

See Also

dr.permutation.test,dr.x,dr.y,dr.direction,dr.coplot,dr.weights

Examples

library(dr)
data(ais)
attach(ais) # the Australian athletes data
#fit dimension reduction using sir
m1 <- dr(LBM~Wt+Ht+RCC+WCC, method="sir", nslices = 8)
summary(m1)

repeat, using save:

m2 <- update(m1,method="save")
summary(m2)

15

repeat, using phd:

m3 <- update(m2, method="phdres")
summary(m3)

dr.estimate.weights Compute estimated weighting toward normality

Description

These functions estimate weights to apply to the rows of a data matrix to make the resulting weighted matrix
as close to multivariate normality as possible.

Usage

dr.weights(formula,...)
dr.estimate.weights(object, sigma=1, covmethod="mve", nsamples=NULL, ...)
robust.center.scale(x, ...)

Arguments

object a dimension reduction regression object name, or an n by p matrix

sigma A tuning parameter, with default 1, usually in the range .2 to 1.0

covmethod covmethod is passed as the argument method to the function cov.rob in the required
package lqs. The choices are "classical", "mve" and "mcd". This probably will
not work with Splus. If classical is selected, the usual estimate of the covariance matrix
is used, but the center is the medians, not the means.

nsamples The weights are determined by random sampling from a data-determined normal distri-
bution. This controls the number of samples

x An � ��� data matrix with no missing values

... Additional args are passed to cov.rob

Details

The basic outline is: (1) Estimate a mean m and covariance matrix S using a possibly robust method; (2) For
each iteration, obtain a random vector from N(m,sigma*S). Add 1 to a counter for observation i if the i-th row
of the data matrix is closest to the random vector; (3) return as weights the sample faction allocated to each
observation. If you set the keyword weights.only to T on the call to dr, then only the list of weights will
be returned.

Value

Returns a list of n weights, some of which may be zero.

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

16

References

R. D. Cook and C. Nachtsheim (1994), Reweighting to achieve elliptically contoured predictors in regression.
Journal of the American Statistical Association, 89, 592–599.

See Also

SEE ALSO lqs,rob.cov

dr.permutation.test Inverse Regression Permutation Tests

Description

This function computes a permutation test for dimension for any inverse regression fitting method.

Usage

dr.permutation.test(object, npermute=50, numdir=object$numdir)

Arguments

object an inverse regression object created by dr

npermute number of permutations to compute, default is 50

numdir maximum permitted value of the dimension, with the default from the object

Value

Returns an object of type ’dr.permutation.test’ that can be printed or summarized to give the summary of the
test.

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

References

See www.stat.umn.edu/arc/addons.html, and then select the article on inverse regression.

See Also

dr

Examples

data(ais)
attach(ais) # the Australian athletes data
#fit inverse regression using sir
m1 <- dr(LBM~Wt+Ht+RCC+WCC, method="sir", nslices = 8)
summary(m1)
dr.permutation.test(m1,npermute=100)

17

plot.dr Plotting methods for dimension reduction regression

Description

These routines provide default plotting methods for dimension reduction regression.

Usage

plot.dr(object, which=1:object$numdir, mark.by.y=F,plot.method=pairs, ...)
dr.coplot(object, which=1:object$numdir, mark.by.y=F, ...)

Arguments

object Any dimension reduction regression object

which Which directions to plot

mark.by.y if TRUE, use the response as a marking variable to color points; if FALSE, use response
in the plot

plot.method The default is to use the pairs or coplot method to draw the plots. If John Fox’s car library
is available, you can substitute scatterplot.matrix for pairs.

... arguments passed to plot or coplot. In particular, if the car library is available, the argu-
ment panel=panel.car will add smoothers to a coplot.

Value

Produces a scatterplot matrix (plot) or coplot (dr.coplot) of the specified directions in an dimension reduction
regression

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

References

Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics. New York:
Wiley.

Examples

data(ais)
attach(ais)
i1<-dr(LBM~Ht+Wt+RCC+WCC)
plot(i1)
dr.coplot(i1,mark.by.y=TRUE)

18

rotplot draw many 2D projections of a 3D plot

Description

This function draws several 2D views of a 3D plot, sort of like a spinning plot.

Usage

rotplot(x, y, theta=seq(0, pi/2, length = 9), ...)

Arguments

x a matrix with 2 columns giving the horizontal axes of the full 3D plot.

y the vertical axis of the 3D plot.

theta a list of rotation angles

... additional arguments passed to coplot

Details

For each value of theta, draw the plot of cos(theta)*x[,1]+sin(theta)*x[,2] versus y.

Value

returns a graph object.

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

Examples

data(ais)
attach(ais)
m1 <- dr(LBM ~ Ht + Wt + WCC)
rotplot(dr.direction(m1,which=1:2),dr.y(m1),col=markby(Sex))

dr.x Inverse regression term matrix

Description

dr.x returns the matrix of data constructed from the formula for a dimension reduction regression. dr.y returns
the response.

Usage

dr.x(object)
dr.y(object)
dr.z(x,weights=NULL,center=TRUE,rotate=TRUE,decomp="svd")

19

Arguments

object An dimension reduction regression object

x

weights

center

rotate

decomp

Decomposition to be used in computing the rotation; the default is "svd".

Value

dr.x returns an �
� � matrix of terms, excluding the intercept, constructed from the dimension reduction
regression object. dr.y returns the response. dr.z returns a possibly centered and scaled version of x.

Author(s)

Sanford Weisberg, <sandy@stat.umn.edu>

See Also

dr

Examples

data(ais)
attach(ais)
m1 <- dr(LBM~Ht+Wt+RCC+WCC)
dr.x(m1)
dr.y(m1)

The following documentation is from the package lqs by Brian Ripley, and is included here for convenience:

cov.rob Resistant Estimation of Multivariate Location and Scatter

Description

Compute a multivariate location and scale estimate with a high breakdown point – this can be thought of as
estimating the mean and covariance of the good part of the data. cov.mve and cov.mcd are compatibility
wrappers.

Usage

cov.rob(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
method = c("mve", "mcd", "classical"), nsamp = "best", seed)

cov.mve(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
nsamp = "best", seed)

cov.mcd(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
nsamp = "best", seed)

20

Arguments

x a matrix or data frame.

cor should the returned result include a correlation matrix?

quantile.used the minimum number of the data points regarded as good points.

method the method to be used – minimum volume ellipsoid, minimum covariance determinant
or classical product-moment. Using cov.mve or cov.mcd forces mve or mcd respec-
tively.

nsamp the number of samples or "best" or "exact" or "sample". If "sample" the
number chosen is min(5*p, 3000), taken from Rousseeuw and Hubert (1997). If
"best" exhaustive enumeration is done up to 5000 samples: if "exact" exhaustive
enumeration will be attempted however many samples are needed.

seed the seed to be used for random sampling: see RNGkind. The current value of .Random.seed
will be preserved if it is set.

Details

For method "mve", an approximate search is made of a subset of size quantile.used with an enclosing
ellipsoid of smallest volume; in method "mcd" it is the volume of the Gaussian confidence ellipsoid, equiva-
lently the determinant of the classical covariance matrix, that is minimized. The mean of the subset provides
a first estimate of the location, and the rescaled covariance matrix a first estimate of scatter. The Mahalanobis
distances of all the points from the location estimate for this covariance matrix are calculated, and those points
within the 97.5% point under Gaussian assumptions are declared to be good. The final estimates are the mean
and rescaled covariance of the good points.

The rescaling is by the appropriate percentile under Gaussian data; in addition the first covariance matrix has
an ad hoc finite-sample correction given by Marazzi.

For method "mve" the search is made over ellipsoids determined by the covariance matrix of p of the data
points. For method "mcd" an additional improvement step suggested by Rousseeuw and van Driessen (1997)
is used, in which once a subset of size quantile.used is selected, an ellipsoid based on its covariance is
tested (as this will have no larger a determinant, and may be smaller).

Value

A list with components

center the final estimate of location.

cov the final estimate of scatter.

cor (only is cor = TRUE) the estimate of the correlation matrix.

sing message giving number of singular samples out of total

crit the value of the criterion on log scale. For MCD this is the determinant, and for MVE it
is proportional to the volume.

best the subset used. For MVE the best sample, for MCD the best set of size quantile.used.

n.obs total number of observations.

Author(s)

B.D. Ripley

21

References

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.

A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth and Brooks/Cole.

P. J. Rousseeuw and B. C. van Zomeren (1990) Unmasking multivariate outliers and leverage points, Journal
of the American Statistical Association, 85, 633–639.

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estima-
tor. Technometrics 41, 212–223.

P. Rousseeuw and M. Hubert (1997) Recent developments in PROGRESS. In L1-Statistical Procedures and
Related Topics ed Y. Dodge, IMS Lecture Notes volume 31, pp. 201–214.

See Also

lqs

Examples

data(stackloss)
set.seed(123)
cov.rob(stackloss)
cov.rob(stack.x, method = "mcd", nsamp = "exact")

22

2. Kernel dimension reduction for regression. The method of kernel di-mension reduction is based on a characterization of conditional
independence using operators on RKHSs. We present this characterization in Section 2.1 and show how it yields a population criterion
for SDR in Section 2.2.Â Sucient dimension reduction and graphics in regression. Ann. Inst. Regression is the study of the dependence
of a response variable y on a collection predictors p collected in x. In dimension reduction regression, we seek to find a few linear
combinations Î²1x,...,Î²dx, such that all the information about the regression is contained in these linear combinations. If d is very small,
perhaps one or two, then the regression problem can be summarized using simple graphics; for example, for d=1, the plot of y versus
Î²1x contains all the regression information. When d=2, a 3D plot contains all the information. Several methods for estimating d and
relevant functions o Linear regression is used to predict the value of an outcome variable Y based on one or more input predictor
variables X. The aim is to establish a linear relationship (a mathematical formula) between the predictor variable(s) and the response
variable, so that, we can use this formula to estimate the value of the response Y, when only the predictors (Xs) values.Â Collectively,
they are called regression coefficients. Ïµ is the error term, the part of Y the regression model is unable to explain. Example Problem.
For this analysis, we will use the cars dataset that comes with R by default. cars is a standard built-in dataset, that makes it convenient
to demonstrate linear regression in a simple and easy to understand fashion. You can access this dataset simply by typing in cars in
your R console.

